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Abstract

Nonlocal damage models are typically used to model failure of quasi-brittle materials. Due to brittleness, the choice

of a particular model or set of parameters can have a crucial in¯uence on the structural response. To assess this in-

¯uence, it is essential to keep ®nite element discretization errors under control. If not, the e�ect of these errors on the

result of a computation could be erroneously interpreted from a constitutive viewpoint. To ensure the quality of the FE

solution, an adaptive strategy based on error estimation is proposed here. It is based on the combination of a residual-

type error estimator and quadrilateral h-remeshing. Another important consequence of brittleness is that it leads to

structural responses of the snap-through or snap-back type. This requires the use of arc-length control, with a de®nition

of the arc parameter that accounts for the localized nature of quasi-brittle failure. All these aspects are discussed for two

particular nonlocal damage models (Mazars and modi®ed von Mises) and for two tests: the Brazilian tensile splitting

test and the single-edge notched beam test. For the latter test, the capability of the Mazars model to capture the curved

crack pattern observed in experiments ± a topic of debate in the literature ± is con®rmed. Ó 2000 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Damage models are often used to model the failure of concrete and other quasi-brittle materials (Le-
maitre and Chaboche, 1990). In scalar models damage is represented by a damage parameter ranging from
0 (for the virgin material with elastic sti�ness) to 1 (for the completely damaged material, with no sti�ness).
If the damage parameter depends only on the strain state at the point under consideration, the numerical
simulations exhibit a pathological mesh dependence, and physically unrealistic results are obtained. This
behaviour of so-called local damage models, caused by a change of type of the governing partial di�erential
equations, is widely reported in the literature (e.g. Ba�zant et al., 1984).
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To solve the pathological mesh dependence of local models, various regularisation techniques have been
suggested (de Borst et al., 1993). One possibility is to use nonlocal damage models (Pijaudier-Cabot and
Ba�zant, 1987; Ba�zant and Pijaudier-Cabot, 1988; Mazars and Pijaudier-Cabot, 1989). The basic idea of
nonlocal models is that the damage parameter depends on the strain state in a neighbourhood (associated
to a characteristic length) of the point under consideration. Another possibility is the use of gradient
models, in which strain derivatives are incorporated in the description of damage evolution (de Borst et al.,
1995). The relation between nonlocal and gradient models is discussed by Huerta and Pijaudier-Cabot
(1994) and Peerlings et al. (1998).

The quasi-brittle behaviour is modelled by means of a stress±strain constitutive equation consisting of an
elastic branch and a softening post-peak branch. This typically results in highly nonlinear structural re-
sponses, of the snap-through or snap-back type. E�cient nonlinear solvers based on arc-length control
(Cris®eld, 1991) are needed for the numerical simulations.

Due to the brittleness and high nonlinearity of the response, the particular expression of the constitutive
equations or the value of the material parameters can have a major in¯uence on the results of the com-
putations, not only from a quantitative but also from a qualitative point of view. Indeed, as shown later
with some examples, di�erent sets of material parameters can lead to completely di�erent failure patterns.

Of course, the ®nite element discretization errors also a�ect the results. This in¯uence is generally of a
quantitative nature. In the case of complex failure mechanisms, the ®nite element mesh can even have a
qualitative in¯uence on the response, as shown by Huerta and D�õez (2000) and D�õez et al. (2000).

Error analysis in localization problems is a ®eld of active research in recent years. An a priori error
analysis is presented in Huerta and Pijaudier-Cabot (1994) for transient problems. One of the conclusions is
that the ®nite element size must be smaller than the characteristic length in order to avoid spurious oscil-
lations. Moreover, an a posteriori error analysis in localization problems is already presented by Huerta et al.
(1997), Arroyo et al. (1997), Huerta and D�õez (2000) and D�õez et al. (2000) for viscoplastic regularization of
softening. Nonlocal damage models have received less attention, and they constitute the focus of this work.

In summary, two factors can have a crucial impact on the results: (1) the material modelling and (2) the
numerical discretization. The main objective of this paper is to show that the FE discretization errors
should be controlled if one wants to assess the behaviour of a particular damage model and/or set of
parameters. If FE errors are not controlled, their e�ect in the solution could be erroneously attributed to
the material modelling. For instance, a comparative analysis of two di�erent damage models with a very
coarse mesh (Fichant et al., 1999) can be of little signi®cance, even at the qualitative level.

In order to control the FE discretization errors, an adaptive strategy based on error assessment for
nonlocal damage models is proposed here. The adaptive strategy (Huerta et al., 1999) is based on the
combination of a residual-type error estimator (D�õez et al., 1998a; Huerta and D�õez, 2000) and quadrilateral
h-remeshing (Sarrate and Huerta, 2000).

An outline of paper follows. The basic features of nonlocal damage models are brie¯y reviewed in
Section 2. Section 3 deals with the solution of the nonlinear systems of equations. The proposed adaptive
strategy, including a brief review of the error estimator, is presented in Section 4. All these aspects are
illustrated by means of some numerical examples in Section 5. Two tests are considered: the Brazilian
cylinder-splitting test (Section 5.1) and the single-edge notched beam (Section 5.2). Finally, some con-
cluding remarks are made in Section 6.

2. Nonlocal damage models

The basic features of nonlocal damage models are brie¯y reviewed in this section. First, the generic
equations are presented in Section 2.1. The de®nition of the state variable and the evolution law for the
damage parameter ± the two key ingredients of a nonlocal damage model ± are discussed in Sections 2.2 and
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2.3 respectively. Finally, the two particular models employed in this work are summarized in Sections 2.4
(Mazars model) and 2.5 (modi®ed von Mises model).

2.1. Generic equations

For the sake of clarity, only isotropic elastic-damage models are considered in this work. These simple
models, which describe in a satisfactory manner damage due mainly to uniaxial extensions, see Fichant et al.
(1999), are su�cient to illustrate the importance of adaptivity based on error estimation in damage com-
putations. However, the approach presented here and the conclusions drawn can be extended to more
complex damage models, incorporating, for instance, anisotropy and/or coupling with plasticity (Mazars
and Pijaudier-Cabot, 1989), or, more generally, to any complex constitutive model.

The loss of sti�ness associated to mechanical degradation of the material is represented by a parameter
D, according to

r � �1ÿ D�C : e; �1�
where r and e are respectively the Cauchy stress tensor and the small strain tensor, and C is the tensor of
elastic moduli (E: Young's modulus; m: Poisson's coe�cient). Parameter D ranges between 0 (virgin ma-
terial, with elastic sti�ness) and 1 (completely damaged material, with no sti�ness). It is assumed that D
depends on a state variable Y, which in turn depends on the strains

Y � Y �e�: �2�
The basic idea of nonlocal damage models is averaging the state variable Y in the neighbourhood of each
point. In this manner, the nonlocal state variable eY is obtained:

eY � Z
V

a�d�Y dV
Z

V
a�d�dV

�
: �3�

The weight function a, which depends on the distance d to the point under consideration, is typically the
Gaussian

a�d� � exp

"
ÿ 2d

lc

� �2
#
; �4�

where the characteristic length lc is a material parameter of the nonlocal damage model. The nonlocal state
variable drives the evolution of damage,

D � D�eY �: �5�
Damage starts above a threshold Y0 (that is, D � 0 for eY 6 Y0) and it cannot decrease (that is, _D P 0).

The characteristic length which appears in Eq. (4) acts as a localization limiter, thus regularizing the
problem (Pijaudier-Cabot and Huerta, 1991). In this manner, the pathological mesh dependence of local
damage models, in which damage is driven by the local state variable Y is avoided.

Eqs. (1)±(5) describe a generic nonlocal damage model. To de®ne a particular model, it is necessary to
specify the de®nition of the state variable, Eq. (2), and the evolution law for damage, Eq. (5). These two
issues are addressed in the following.

2.2. De®nition of the state variable

Since the state variable drives damage, Y should account for those features of the strain ®eld which are
responsible for damage inception and propagation. As discussed by Peerlings et al. (1998), Y should be
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more sensitive to positive strains than to negative strains. In the Mazars model (Mazars, 1986), for instance,
Y is a function of the principal strains ei,

Y �
���������������������������������X

i

max�0; ei�� �2
r

: �6�

Note that only the positive principal strains are accounted for in the de®nition of Y.
In the modi®ed von Mises model (de Vree et al., 1995), on the other hand, Y is de®ned as

Y � k ÿ 1

2k�1ÿ 2m� I1 � 1

2k

�����������������������������������������������������
k ÿ 1

1ÿ 2m
I1

� �2

� 12k

�1� m�2 J2

s
; �7�

where k is the ratio of compressive strength to tensile strength, I1, the ®rst invariant of the strain tensor and
J2, the second invariant of the deviatoric strain tensor.

The main di�erence between the two models concerns the ratio of compressive to tensile strength
(Peerlings et al., 1998), which is in the order of ten for concrete. The Mazars model yields too low values;
for the modi®ed von Mises model, on the contrary, it can be controlled by means of parameter k (in the
numerical examples of Section 5, k is set to 10).

2.3. Evolution of the damage parameter

Next, a particular expression for the evolution of damage for eY > Y0 must be chosen. Two typical
choices are the exponential law (Mazars, 1986)

D � 1ÿ Y0�1ÿ A�eY ÿ A exp�ÿB�eY ÿ Y0�� �8�

and the so-called polynomial law (Pijaudier-Cabot and Huerta, 1991; Askes and Sluys, 1999)

D � 1ÿ 1

1� B�eY ÿ Y0� � A�eY ÿ Y0�2
: �9�

The meaning of the two material parameters A and B is clear in a uniaxial stress±strain curve. For a one-
dimensional homogeneous strain e, eY � Y � e. Combining Eqs. (8) or (9) with Eq. (1) results respectively in

r � Ee for e6 Y0;
r � EY0�1ÿ A� � AE exp ÿ B eÿ Y0� �� �e for e > Y0

�10�

and

r � Ee for e6 Y0;

r � Ee

1� B�eÿ Y0� � A�eÿ Y0�2
for e > Y0:

�11�

The aspect of these two curves for typical values of parameters A and B is shown in Fig. 1. The elastic
branch is followed by a softening post-peak branch. In both cases, parameter A is associated to the residual
strength and B controls the slope of the softening branch at the peak �e � Y0�.

Fig. 2 shows various stress±strain curves found in the literature. Taking an exponential evolution of
damage, Eq. (8), with A � 1, B � 15000, E � 23 400 MPa and Y0 � 2:6� 10ÿ4 leads to a high peak stress
and a very abrupt softening (Pijaudier-Cabot, 1996). With a polynomial evolution of damage, Eq. (9), and
parameters A � 0, B � 20000, E � 30000 MPa and Y0 � 1:2� 10ÿ4, a curve with a high residual strength is
obtained (Askes and Sluys, 1999). With E � 35000 MPa, Y0 � 6� 10ÿ5 and an exponential evolution for
damage very similar to Eq. (8), Peerlings et al. (1998) obtain a rather puzzling curve, which is almost bi-
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Fig. 1. One-dimensional stress±strain curves for quasi-brittle materials. For the two damage evolution laws, A is associated to the

residual strength and B to the slope at the peak.
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Fig. 2. Various stress±strain curves for quasi-brittle materials employed by Pijaudier-Cabot (1996), Askes and Sluys (1999) and

Peerlings et al. (1998). The two curves used in Sections 5.1 (Brazilian test) and 5.2 (single-edge notched beam test) are also shown.
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linear and has practically no softening. Note that, even in a quite specialized ®eld such as scalar damage
models for concrete, there is a wide variety of proposed stress±strain curves in the literature. Fig. 2 also
shows the two curves used in Section 5 for the Brazilian test and the single-edge notched beam test, which
are commented later.

2.4. Mazars model

The Mazars damage model combines the de®nition of Y of Eq. (6) and an exponential law for the
evolution of damage, see Mazars (1986). Moreover, the damage parameter D is expressed as the weighted
sum of tensile damage Dt and compressive damage Dc (D � atDt � acDc). For each of these two damage
components, an exponential evolution law (with parameters At, Bt and Ac, Bc respectively) is assumed. The
weights at and ac are computed from the strain tensor e as detailed by Pijaudier-Cabot and Mazars (1991)
and Pegon and Anthoine (1994).

A simpli®ed version of the Mazars model can also be found in the literature (Peerlings et al., 1998). The
basic idea is combining directly Eqs. (6) and (8), without splitting damage into tensile and compressive
components.

The equations for the full and the simpli®ed versions of the Mazars model are summarized in Figs. 3 and
4 respectively.

Fig. 3. Full Mazars model.

Fig. 4. Simpli®ed Mazars model.
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2.5. Modi®ed von Mises model

The basic feature of the modi®ed von Mises model is the de®nition of the state variable given by Eq. (7),
see de Vree et al. (1995). Regarding the evolution of damage, both the polynomial expression of Eq. (9)
(Askes and Sluys, 1999) and an exponential expression similar to that of Eq. (8), see Peerlings et al. (1998),
have been suggested in the literature.

Figs. 5 and 6 summarize the equations of the modi®ed von Mises model with polynomial and expo-
nential evolution of damage respectively.

3. Nonlinear solvers

The brittle behaviour associated to the stress±strain curves of Fig. 1 typically induces snap-through or
snap-back responses, as illustrated in Section 5. As a consequence, arc-length control is required for solving
the nonlinear systems of equations.

Another typical feature of damage models is localization. In many problems, damage localizes in rel-
atively narrow bands. For this reason, standard arc-length techniques, such as spherical or cylindrical
formulations (Cris®eld, 1991), are not suitable for damage models. They provide a measure of the incre-
ment of the solution which is too ``global'', in contrast with the localized nature of the problem (Geers,
1999).

Alternatively, more ``local'' de®nitions of the arc-length parameter s are required. One possible choice
(Pegon and Anthoine, 1994) is the maximum strain increment (Brazilian test, Section 5.1)

Ds � max jDeijj: �12�
Another possibility is to take one characteristic degree of freedom (or a combination of a few characteristic
dof) as the arc-length parameter:

Ds � jDucharacteristicj: �13�

Fig. 5. Modi®ed von Mises model with polynomial evolution of damage.

Fig. 6. Modi®ed von Mises model with exponential evolution of damage.
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A common de®nition of s included in Eq. (13) are crack mouth displacements, which account for the
relative displacement of the two nodes at the crack mouth. The crack-mouth sliding displacement (CMSD)
is used to control the single-edge notched beam test of Section 5.2.

Another key issue in solving the nonlinear systems is the choice of a sti�ness matrix. Due to nonlocality
(i.e. interaction between Gauss points at di�erent ®nite elements), computing consistent tangent matrices is
not a straightforward task (Pijaudier-Cabot and Huerta, 1991; Pegon and Anthoine, 1994). In fact, it is
necessary to take into account the nonlocal interaction between Gauss points (Jir�asek, 1999). To avoid
doing so, de Vree et al. (1995) and Askes and Sluys (1999) work with a ``pseudo-consistent'' tangent matrix,
obtained by neglecting the nonlocality and computing the tangent moduli at each Gauss point. The re-
sulting matrix is still nonsymmetric.

A di�erent strategy is followed here (Pegon and Anthoine, 1994): a combination of secant sti�ness
matrices and an acceleration technique. Secant matrices, computed with the secant moduli �1ÿ D�C, see
Eq. (1), are symmetric and positive de®nite, so standard symmetric solvers can be used. The acceleration
technique is based on expressing the solution as a linear combination of the last few iterates and minimizing
the residual. The weights are computed via a least-squares ®t.

4. Error estimation and adaptivity

4.1. Why an adaptive strategy?

The numerical implications of the brittle behaviour of nonlocal damage models have been discussed in
the previous section. From the viewpoint of modelling, the main consequence of brittleness is that the
choice of the constitutive equation and the material parameters can have a qualitative in¯uence on the
results. Indeed, as illustrated in Section 5, changes in the constitutive modelling can lead to very di�erent
failure mechanisms.

Of course, the ®nite element mesh also a�ects the numerical solution. This in¯uence is general quanti-
tative. However, in some special cases ± with complex failure mechanisms ± the in¯uence of the ®nite ele-
ment mesh may even be qualitative. For instance, in the context of softening viscoplasticity, D�õez et al.
(2000) show that di�erent meshes can lead to di�erent failure mechanisms, even if the same constitutive
equations and material parameters are employed. For dynamic problems, Huerta and Pijaudier-Cabot
(1994), on the other hand, conclude that the element size must be smaller than the internal length of the
model in order to obtain su�cient accuracy.

In summary, two factors a�ect quantitatively or even qualitatively the numerical computation: the model
(constitutive equations and material parameters) and the numerical discretization (®nite element mesh).
This means that FE discretization errors should be controlled if the e�ect of the model is to be properly
assessed. If models or sets of parameters are compared with a given mesh without controlling the dis-
cretization errors, the e�ect of these errors on the solution may be erroneously attributed to the di�erent
modelling. For instance, a comparative analysis of two di�erent damage models with a coarse mesh (Fi-
chant et al., 1999) can be of little signi®cance, even if only qualitative information is sought.

To reduce the discretization errors, the ®nite element must be su�ciently ®ne. As shown by D�õez et al.
(2000), deciding whether a mesh is ``su�ciently ®ne'' or not for a given analysis is not a simple task. For this
reason, and adaptive strategy is proposed in that reference and adapted here to the case of nonlocal damage
models.

The adaptive strategy (Huerta et al., 1999) is based on the combination of a residual-type error estimator
(D�õez et al., 1998a; Huerta and D�õez, 2000) and h-remeshing. The error distribution is computed with the
error estimator and translated into desired element sizes with a so-called optimality criterion (D�õez and
Huerta, 1999). An unstructured quadrilateral mesh generator (Sarrate and Huerta, 2000) is then used to
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build a mesh with the desired sizes. This iterative process stops (typically after 2±4 iterations) when the
relative error of the solution is below a prescribed threshold set a priori.

4.2. The error estimator

The error estimator used in this work was ®rst developed for linear problems (D�õez et al., 1998a,b) and
later extended to nonlinear problems (Huerta et al., 1998; Huerta and D�õez, 2000; D�õez et al., 2000). A
detailed presentation an analysis can be found in these references. Here, only a brief review is given, to-
gether with some remarks speci®c of nonlocal damage models.

Using a mesh of characteristic size h, the ®nite element method provides the discrete equilibrium
equation

f int
h �uh� � fext

h ; �14�
where the unknown is the nodal displacement vector uh, f int

h �uh� is the vector of nodal internal forces as-
sociated with uh and fext

h is the discretized external force term.
The goal is estimating the error of the solution uh of Eq. (14). Since the actual displacements are un-

known, the actual error cannot be computed. However, using a much ®ner mesh of characteristic size ~h
(~h� h), a new solution u~h is obtained which is much more accurate than uh, because the regularized
nonlocal model ensures convergence as the element size goes to zero. This solution can be taken as a
reference solution and, consequently, the actual error can be fairly replaced by the reference error e~h, i.e. the
di�erence between u~h and uh.

Note, however, that the determination of u~h (or e~h) requires solving an equation analogous to Eq. (14)
but in the ®ner mesh

f int
~h �u~h� � f int

~h �uh � e~h� � fext
~h : �15�

This problem is computationally much more expensive than the original one. The basic idea of the error
estimator is to approximate e~h by low-cost local computations, following the standard procedure in re-
sidual-type error estimators. That is, instead of solving Eq. (15), e~h is approximated by solving a set of local
problems. The method consists of two phases. First, a simple residual problem is solved inside each element
(interior estimation). Second, a new family of simple local problems over so-called patches is considered
and the interior estimate is complemented adding a new contribution (patch estimation).

In order to simplify the presentation, the error estimator is presented for the linear case ®rst and then
extended to nonlinear problems.

4.2.1. The error estimator for linear problems
If the problem is linear, f int�u� is a linear function of u and, consequently, Eqs. (14) and (15) become

f int
h �uh� � Khuh and f int

~h �u~h� � K~hu~h; �16�
where Kh and K~h are the elastic sti�ness matrices associated with the coarse computational mesh and the
®ner mesh respectively. These two equations can be easily manipulated to provide a linear equation for the
reference error,

K~he~h � fext
~h ÿ f int

~h �uh� �: ÿr~h�uh�; �17�
where f int

~h �uh� is the internal force vector in the ®ner mesh associated with the solution uh of the coarse mesh,
and r~h�uh� is the residual.

Fig. 7 shows a graphic illustration of the reference error and its relation with the residual. The solutions
uh and u~h can be seen as the intersection between the curves describing the evolution of the internal forces
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and the horizontal lines corresponding to the discretized external forces (which are assumed to be inde-
pendent of the solution). In the linear case the evolution of internal forces is described by straight lines and
everything turns trivial.

It is clear from Fig. 7 that the reference error, e~h � u~h ÿ uh, and the residual, r~h�uh� :� f int
~h �uh� ÿ fext

~h , are
indeed related by the sti�ness matrix in the reference mesh, K~h, as indicated by Eq. (17).

4.2.1.1. Interior estimation. The ®ner reference mesh is constructed by assembling submeshes over each
element. These elementary submeshes are built by mapping a submesh over the reference element into the
elements of the actual mesh, see Fig. 8.

To avoid una�ordable computations (notice that Eq. (17) is a very large system of equations), the error
estimation must be performed solving local problems. This is standard in residual-type error estimators.
The natural partition of the domain to de®ne these local problems is the set of elements of the ``coarse''
computational mesh (denoted by Xk, k � 1; . . .).

The elementary submeshes of Fig. 8 can be used to solve the error Eq. (17) on each element Xk of the
original mesh. The solution of such problems requires of course proper boundary conditions for the error.
Most residual-type error estimators use an involved and expensive ¯ux-splitting procedure to prescribe the
error ¯ux around each element Xk. In contrast with this common approach, the estimator used in this work

Fig. 7. Graphic interpretation of the reference error in linear problems.

Fig. 8. (a) The reference submesh is mapped into (b) an element to get (c) an elementary submesh.
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avoids complex boundary conditions: trivial (homogeneous Dirichlet) boundary conditions are imposed for
both sets of local problems. This feature is probably its major advantage with respect to other residual-type
estimators. The consequences of such a choice for the boundary conditions are discussed later.

Thus, the interior estimation consists of solving Eq. (17) at element level and prescribing the error in
displacements to be zero in all the boundary nodes of the elementary submesh. This results in the system of
equations

Ke
kek � ÿre

k; �18�
where Ke

k is the local sti�ness matrix associated with the elementary submesh over element Xk and re
k is the

restriction of the residual to this element. The vector ek is an approximation to the restriction of the ref-
erence error e~h inside the element Xk. In the linear case, the squared local energy norm of the interior es-
timate ek can be directly computed as

kekk2 � eT
k Ke

kek � ÿeT
k re

k: �19�
Once the elementary problems are solved, the local interior estimates can be assembled to build up a global
estimate e over the whole domain X,

e �
X

k

ek: �20�

The global norm of e can be easily computed using the local estimates as

kek2 �
X

k

kekk2: �21�

The choice of homogeneous Dirichlet boundary condition implies that kek � ke~hk. The reference error
e~h is, most probably, non-zero along the element edges, thus e may be a poor approximation to e~h. This fact
is taken into account in the patch estimation.

4.2.1.2. Patch estimation and complete estimate. Once the interior estimate is computed, it is necessary to
improve the error estimation by adding nonzero values in the element boundaries. This can be done fol-
lowing the same idea of the interior estimation, precluding the direct computation of ¯ux jumps and
avoiding any ¯ux splitting procedure.

The interior estimate is based on solving local problems in the elements, the natural partition of the
domain X. In this second phase, a di�erent set of subdomains, called patches, is considered. Each patch is
associated to a node and covers one-fourth of each element sharing that node, see Fig. 9.

Fig. 9. Patch submesh centred in a node of the computational mesh.
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The idea is to use this new partition to de®ne new local problems ± with the help of a submesh ± for the
error. Again, homogeneous Dirichlet boundary conditions are imposed on the whole boundary of each
patch. A system analogous to that of Eq. (18) must be solved for each patch. In this manner, a new ap-
proximation to the error is obtained. The key idea of the patch estimation is that this new approximation
takes nonzero values in the boundary of the elements, where the interior estimate e vanishes. Thus, ¯ux
jumps across element edges are accounted for.

Using the patch estimation, local and global error estimates can be computed following equations
analogous to Eqs. (19) and (21) respectively. Care is taken during patch estimation to ensure orthogonality
between the patch estimate and the interior estimate. By doing so, the two contributions can be added and a
new approximation to the reference error is found.

4.2.2. The error estimator for nonlinear problems
If the problem is nonlinear, Eq. (17) does not hold and the only available equation for the error is Eq.

(15). That is, the reference error e~h veri®es

f int
~h �uh � e~h� � fext

~h : �22�
This is a general nonlinear equation, to be solved using any standard nonlinear solver. In fact, this problem
is equivalent to ®nding the reference solution u~h (recall that u~h � uh � e~h). Note, however, that the unknown
e~h can be assumed to be small compared with u~h and, consequently, this nonlinear problem is much easier
than the original one (because uh is a good initial approximation to u~h). Typically only two iterations are
needed for convergence. Fig. 10 illustrates the nonlinear error estimation. Note that, in contrast to Fig. 7,
the curves describing the evolution of the internal forces are not straight lines due to nonlinearity, so an
iterative solver is needed to compute e~h.

If the tangent sti�ness matrix is available, this general nonlinear estimation can be simpli®ed by means of
a standard linearization (Huerta and D�õez, 2000; D�õez et al., 2000). The resulting tangent error estimation is
illustrated in Fig. 11. The reference error is approximated using a tangent approximation of the curve
representing the behaviour associated with the ®ner mesh. However, as discussed in Section 3, computing

Fig. 10. Graphic interpretation of the reference error in nonlinear problems and fully nonlinear error estimation.
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tangent sti�ness matrices is involved for nonlocal damage models, so they are not used in this work. In fact,
the nonlinear error estimation is performed iteratively as shown in Fig. 10, by means of the same com-
bination of secant sti�ness matrices and acceleration technique used to compute the solution.

The main idea of the generalization of the error estimator to nonlinear cases is to reproduce the same
structure of the linear case with a di�erent equation for the error. Thus, again in this case, the estimation of
the error is splitted into two steps. First, elementary nonlinear problems are solved over the elements with
null error boundary conditions, and an interior estimate is computed. Second, a nonlinear problem is
solved over each patch, again with homogeneous Dirichlet boundary conditions. Once the two contribu-
tions are added, the energy of the error is measured using a simple scalar product: kekk2 � ÿeT

k re
k. A relative

error is obtained (see Section 5.2) by dividing the energy of the error over the energy of the solution.

4.2.3. The error estimator for nonlocal damage models
To sum up, the basic idea of the error estimator is to solve local problems over the elements and over

patches (with patch size � element size, see Fig. 9). In the context of nonlocal damage models, it is im-
portant to notice that, upon mesh re®nement during the adaptive process, the element/patch size may
become much smaller than the characteristic length lc of the nonlocal model. This result was already
predicted by Huerta and Pijaudier-Cabot (1994) via an analytical study. As a consequence, the Gaussian
function used for the nonlocal averaging, Eq. (4), is truncated and its support is limited to one element/
patch. This means that, for every local problem, the nonlocal interaction between Gauss points located at
di�erent elements/patches is neglected. Since the patches overlap the elements, the current error estimation
procedure (i.e. a loop of elements followed by a loop on patches) takes into account the nonlocal inter-
action between adjacent elements, but not between more distant elements. The development of an esti-
mation procedure that takes into account the full nonlocality is currently under progress. Nevertheless, it
should be pointed out here that the in¯uence at a given Gauss point of distant Gauss points, which in fact
recalls the concept of pollution errors, can be assessed with a global analysis (Huerta and D�õez, 2000).

Fig. 11. Graphic interpretation of the reference error in nonlinear problems and error estimation using tangent approximation.
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5. Numerical examples

The various aspects discussed in the previous sections are illustrated here by means of some numerical
examples. Some basic features of nonlocal damage models are discussed in Section 5.1 for the Brazilian test.
The single-edge notched beam is considered in Section 5.2, where emphasis is put on the proposed adaptive
strategy.

5.1. Brazilian test

The Brazilian splitting test is a standard technique to determine the tensile strength of concrete, rocks
and other geomaterials. A cylindrical specimen is loaded along a diametral plane by means of steel bearing
plates, see Fig. 12. A plane strain simulation is carried out with the full Mazars model, see Fig. 3, for the
concrete specimen. Elastic behaviour is assumed for the steel bearing plates. The material parameters are
shown in Table 1. As discussed by Rocco et al. (1999), the mechanism of rupture is a�ected by various
factors, notably the ratio between the specimen radius R and the bearing plate width B. A numerical study
of the in¯uence of these parameters is not attempted here. Fixed values of R � 40 mm and B � 10 mm are
considered.

Due to double symmetry, the computational domain consists of only one quarter of the specimen. Two
®nite element meshes, with a di�erent element density in the zone of interest, have been used, see Fig. 13.

The nonlinear problem is solved incrementally with arc-length control, by using the maximum increment
of strain as arc parameter, see Eq. (12). The highly nonlinear structural response is depicted in Fig. 14. In
Fig. 14(a), the applied force (per unit height of the cylindrical specimen and over a width B=2) is plotted
versus the vertical displacement of the bearing plate. Note the severe snap-back after the peak load is

P

Fig. 12. Brazilian test: problem statement.
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reached. Fig. 14(b), on the other hand, shows the applied force versus a measure of the crack opening
displacement (the horizontal displacement of point P located under the corner of the plate, see Fig. 12).

It is interesting to note a certain amount of reloading after the minimum load is reached (from state C to
state D). This behaviour is in qualitative agreement with the observations of Rocco et al. (1999) and
Carmona et al. (1998). Their interpretation is illustrated here with the help of Fig. 15, where the damage
®eld is plotted at states A, B, C and D marked in Fig. 14. Damage initiates at the centre of the specimen
(state A) and propagates along the loading plane (state B) until it reaches the bearing plates (state C). This
evolution of damage has been observed in experiments based on holographic interferometry (Castro-
Montero et al., 1995). State C corresponds to the splitting of the disc into two half-discs. After that, there is
some extra loading capacity of the two half-discs working separately under compression. Failure at state D
can be associated to the formation of wedges under the bearing plates.

Table 1

Brazilian test. Material parameters for concrete specimen (full Mazars model) and steel bearing plates (elastic)

Parameter Concrete Steel

E 37700 MPa 300000 MPa

m 0:2 0:2
Y0 10ÿ4

At 1

Bt 15600

Ac 1:4
Bc 1900

lc 5 mm

Fig. 13. Brazilian test. Two meshes (shown for the full, not the computational, domain for illustrative purposes) with di�erent element

density in the loading plane are used.
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5.2. Single-edge notched beam

The second example is the single-edge notched beam test. First, the reference test is presented and the
adaptive procedure is discussed in detail in Section 5.2.1. After that, the in¯uence of the constitutive model
and/or the material parameters is assessed in Sections 5.2.2±5.2.4.

5.2.1. Reference test
A single-edged notched beam (SENB) is subjected to an anti-symmetrical four-point loading. The ge-

ometry, loads and supports, shown in Fig. 16, correspond to the medium-size specimen tested by Carpinteri
et al. (1993). A plane stress analysis is performed. To begin with, the test is carried out with the modi®ed
von Mises model with exponential damage evolution, see Fig. 6, and the material parameters of Table 2.
Later in this same section, the test is reproduced with the Mazars model. The CMSD ± that is, the relative
vertical displacement between the two nodes at the crack mouth ± is taken as the arc parameter in the arc-
length control procedure.

The adaptive analysis starts with a rather coarse mesh, see Fig. 17(a), with 659 elements and 719 nodes.
Note, in particular, that there is only one ®nite element in the notch width. This mesh is denoted Mesh 0 to
emphasize that it is the initial approximation in an iterative process. The damage distribution and the
deformed mesh (ampli®ed 300 times) for the ®nal state (corresponding to a CMSD of 0.08 mm) are shown
respectively in Fig. 17(b) and (c).

The distribution of absolute error in the ®nal state is depicted in Fig. 17(d). The estimator clearly detects
the zones with larger errors: the supports and the edges of the ``crack'' (i.e. the damaged band). The solution
with Mesh 0 has a global relative error of 4:41%, larger than the prescribed goal of 2%.

The error distribution of Fig. 17(d) and the error goal of 2% are translated into a ®eld of desired element
sizes, from which Mesh 1 (3185 elements and 3340 nodes) is generated, see Fig. 18(a). As expected, elements
are concentrated where the solution with Mesh 0 has larger errors. With the new mesh, the damage dis-
tribution and the deformed mesh of Fig. 18(b) and (c) are obtained. Fig. 18(d) shows that there is a sig-

Fig. 14. Brazilian test. Force versus (a) the vertical displacement of the bearing plate and (b) the crack opening displacement (i.e. the

horizontal displacement of point P, see Fig. 12). The damage ®eld at states A, B, C and D is depicted in Fig. 15.
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Fig. 15. Brazilian test. Evolution of the damage ®eld for Mesh 1 (top) and Mesh 2 (bottom). Damage initiates at the centre of the

specimen and propagates along the loading plane. States A, B, C and D are de®ned in Fig. 14.
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ni®cant reduction in the error (note that the scale is di�erent from that of Fig. 17(d)). The global relative
error is 2.55%.

Since the goal of 2% error is still not attained, the adaptive process goes on. Mesh 2, with 3924 elements
and 4107 nodes, is obtained, see Fig. 19(a). Note that the zones around the outermost supports have been
dere®ned, while the edges of the crack have been re®ned. Fig. 19(b)±(d) show respectively the ®nal damage
distribution, deformed mesh and error ®eld. The global relative error is 1.62%, so the solution with Mesh 2

is acceptable and the iterative adaptive procedure is stopped.
A closer look at the adaptive process is o�ered by Fig. 20, which zooms on the central part of the beam.

It is clear in this ®gure that the remeshing is indeed driven by the error ®eld. It is also worth mentioning that
errors are large in the edges of the crack, not in the crack itself. This result is corroborated by Fig. 21, where
pro®les of the damage and error ®elds across the crack are plotted. For the three meshes, two error peaks
are found in the fronts of the damage pro®le. The error in the interior of the crack, on the other hand, is
relatively small. This strongly suggests that damage gradient, rather than damage itself, would be a proper
error indicator (Huerta et al., 1999) for this problem. A similar result is reported by Arroyo et al. (1997) in
the context of softening viscoplasticity, where the gradient of inelastic strains also turns out to be a better
error indicator than inelastic strains themselves. The SENB reference test just discussed has also been

Fig. 16. Single-edge notched beam: problem statement. All distances in mm.

Table 2

SENB reference test. Material parameters for concrete beam (modi®ed von Mises model with exponential damage evolution) and steel

loading plates (elastic)

Parameter Concrete Steel

E 28000 MPa 280000 MPa

m 0:1 0.2

Y0 1:5� 10ÿ4

A 0:8
B 9000

lc 10 mm
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Fig. 17. SENB reference test, initial approximation in the adaptive process. (a) Mesh 0, (b) ®nal damage distribution, (c) ®nal de-

formed mesh ��300� and (d) error distribution.
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Fig. 18. SENB reference test, after one iteration in the adaptive process. (a) Mesh 1, (b) ®nal damage distribution, (c) ®nal deformed

mesh ��300� and (d) error distribution.

7520 A. Rodr�õguez-Ferran, A. Huerta / International Journal of Solids and Structures 37 (2000) 7501±7528



 0.10
 0.30
 0.50
 0.70
 0.90
 0.94
 0.98

 0.0

 0.02

Fig. 19. SENB reference test, after two iterations in the adaptive process. (a) Mesh 2, (b) ®nal damage distribution, (c) ®nal deformed

mesh ��300� and (d) error distribution.
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analyzed with the Mazars model using the material parameters of Table 2. Both the simpli®ed version and
the full version (with At � A, Bt � B, Ac � 1:4 and Bc � 1900) of the Mazars model, Figs. 4 and 3, have been
tested. Very similar results are obtained, so it is concluded that the split of damage into tensile and
compressive components is not of relevance for this test. The results are summarized in Fig. 22, showing the
®nal damage ®elds obtained with Mesh 0 and Mesh 2.

Figs. 18, 19 and 22 (bottom) clearly illustrate that both the modi®ed von Mises model and the Mazars
model are capable of capturing the curved crack observed in the experiments (Carpinteri et al., 1993), if a
su�ciently ®ne mesh is employed. As discussed by Fichant et al. (1999), damage in the SENB test is es-

 0.0
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 0.0

 0.02
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 0.02

Fig. 20. SENB reference test. Zoom on the central part of the beam of the mesh (top row) and the error ®eld (bottom row).

Fig. 21. SENB reference test. Pro®les of damage (- - -) and error (Ð) across the crack. The two error peaks are associated to large

damage gradients.
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Fig. 22. SENB reference test with the Mazars model. Final damage ®elds obtained with Mesh 0 and Mesh 2.
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Fig. 23. SENB reference test. Total applied force F versus (a) the CMSD and (b) the crack-mouth opening displacement (CMOD).

Similar results are obtained with the modi®ed von Mises model (±±) and the Mazars model (- - -).
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sentially caused by extensions. The two models yield similar results because they have the same response in
uniaxial tension. The fact that the Mazars model underestimates the compressive strength has little e�ect,
because compressive stresses play a minor role in this test.

The structural response is shown in Fig. 23. The total applied force F is plotted versus the CMSD and
the CMOD (that is, relative horizontal displacement of the two nodes at the crack mouth) for the
two models. There is a good qualitative and quantitative agreement with the experimental observations
of Carpinteri et al. (1993), including a peak load of 60 kN and a mild softening branch after the peak
load.

5.2.2. In¯uence of evolution law for damage
The in¯uence of the evolution law for damage is assessed in this section. A polynomial (instead of an

exponential) law is assumed for the modi®ed von Mises model, see Fig. 5, with parameter A � 4� 107 and
all the other parameters taken from Table 2. The two stress±strain curves (i.e. with exponential and
polynomial damage evolution) are those used in Fig. 1 to illustrate the basic features of quasi-brittle re-
sponse. The results are shown in Fig. 24. The ®nal damage distribution, depicted in Fig. 24(a), is similar to
that of the reference test. However, the curve F±CMSD shows a larger post-peak slope, see Fig. 24(b). This
is associated to the shape of the softening branch, Fig. 1. With the exponential evolution law, a constant
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Fig. 24. SENB test. Modi®ed von Mises model with a polynomial law for damage: (a) the ®nal damage distribution is similar to the

reference test with an exponential law (cf. Fig. 19); (b) the post-peak softening is more abrupt (cf. Fig. 23).
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residual strength is attained relatively soon; with the polynomial law, on the other hand, it decreases
progressively.

5.2.3. In¯uence of the residual strength
The SENB test of Askes and Sluys (1999) is reproduced here. The main di�erences with respect to the

reference test are (1) a smaller beam, (2) a lower characteristic length (lc � 1 mm) and (3) a di�erent strain±
stress curve with a higher residual strength, see Fig. 2.

The results are depicted in Fig. 25. The curved crack is captured correctly, see Fig. 25(a). Note that the
use of a smaller characteristic length leads to a thinner damage band. On the other hand, the large residual
strength results in a structural response with no softening, see Fig. 25(b).

5.2.4. In¯uence of the post-peak slope
As a last test, the e�ect of the post-peak slope is assessed. The stress±strain curve proposed by Pijaudier-

Cabot (1996), see Fig. 2, is combined with the Mazars model.
The high brittleness of the stress±strain curve a�ects qualitatively the results. As shown by Fig. 26(b), the

structural response is very brittle and the CMSD does not increase monotonically. The ®nal damage ®eld of
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Fig. 25. SENB test of Askes and Sluys (1999). (a) The damage band is thinner because a smaller characteristic length is used. (b) The

large residual strength leads to a F±CMSD curve with no softening.
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Fig. 26(a) shows that the primary crack is accompanied by what appears to be the inception of a secondary
crack, right below the notch tip.

If, in addition, a larger characteristic length (lc � 25 mm) and a smaller beam are considered (Schlangen,
1993), then a vertical straight crack is obtained, see Fig. 27. In fact, a comparison of Figs. 26 and 27
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Fig. 26. SENB test of Pijaudier-Cabot (1996). The very brittle stress±strain curve results in (a) a di�erent damage ®eld and (b) a F±

CMSD curve with snap-back.

 0.01
 0.03
 0.05
 0.07
 0.09
 0.11
 0.13

Fig. 27. SENB test with the Mazars model. For a brittle stress±strain curve and a large characteristic length, a vertical crack is ob-

tained.
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suggests that the incipient secondary crack of the previous test has become dominant and determines the
failure pattern. A similar result (i.e. vertical straight instead of curved crack) is reported for the Mazars
model by Peerlings et al. (1998). From the discussion of Section 5.2.1, it is clear that this result is due to a
(not unique) particular choice of parameters, not to any intrinsic di�culty of the Mazars model to capture
the curved crack of the SENB test.

6. Concluding remarks

An adaptive strategy to ensure the quality of ®nite element computations with nonlocal damage models
has been presented. The proposed strategy relies on two basic ingredients: a residual-type error estimator
and an unstructured quadrilateral mesh generator.

The constitutive modelling of failure in concrete is a topic of current research. As pointed out in this
paper, there is no unanimous agreement on the stress±strain behaviour of concrete, even for the speci®c
case of scalar nonlocal elastic-damage models.

A key issue in the nonlinear solution of complex damage problems is the use of local control variables,
which take into account the localized nature of the failure pattern.

The error estimator is probably the most distinct feature of the proposed adaptive strategy. An existing
residual-type nonlinear error estimator has been extended to the context of nonlocal damage models, where
tangent sti�ness matrices are not readily available.

By keeping under control ®nite element discretization errors, it is possible to focus on constitutive
modelling and its e�ect on the structural response. As illustrated with the single-edge notched beam test, the
proposed approach allows to assess the in¯uence of the particular choice of the state variable, the evolution
law for damage or the material parameters in a reliable manner. In particular, the capability of the Mazars
model to capture the curved crack pattern observed in experiments ± a debated issue in the literature ± has
been con®rmed.

Various interesting topics lie ahead. As already discussed, work is under progress to develop an error
estimation procedure that takes fully into account the nonlocal interaction. The basic idea is that the error
associated to the nonlocal interaction between di�erent elements can be cast as a pollution error. Also in
perspective is goal-oriented error estimation: instead of estimating the error of the displacement ®eld, it may
be preferable to estimate the error in outputs of special relevance, such as the peak load in the Brazilian test.

On a wider scope, a combined experimental-numerical study could now be used to identify the material
parameters for the nonlocal damage models. If this process is done without controlling the quality of the
FE solution, the obtained parameters ®t a solution a�ected by discretization errors, so their signi®cance is
limited.
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